Pain Points of Spider Robots

Limited Workspace Description: Its working envelope is relatively small and dome-shaped due to the parallel-arm structure. Pain Point: Unsuitable for long-distance movement; ideal only for compact work areas. Very Low Payload Capacity Description: Designed for speed, with lightweight components limiting load capacity. Pain Point: Typically handles only a few grams to a few hundred grams. Restricted […]

What About the Speed of a Centrifugal Feeder?

The speed of a centrifugal feeder is one of its standout features. It typically achieves higher and smoother feeding rates compared to vibratory bowls for suitable parts. Speed Range and Advantages High-Speed Range: For small, uniform parts, centrifugal feeders can easily achieve speeds ranging from hundreds to thousands of parts per minute. Speeds between 1000 to 4000 PPM are common. […]

Advantages of Spider Robots

Extremely High Speed Description: The lightweight moving platform is driven by multiple servo motors simultaneously, allowing for very high acceleration and deceleration. Advantage: Ideal for high-speed picking, packaging, and sorting, significantly outperforming traditional serial robots in cycle time. Outstanding Repeatability Description: The load is shared by multiple arms, creating a stable, rigid structure that minimizes cumulative […]

Working Principle of Spider Robots

The core principle is that multiple independent arms work in parallel to drive a single moving platform. Core Structure Base Platform: The fixed base. Moving Platform: The end-effector that carries the tooling. Drive Arms: Typically 3 or 4 arms, each driven by an independent servo motor on the base. Forearm Links: Lightweight rods connecting the drive […]

Pain Points of Flexible Feeders

  High Initial Investment Cost Description: A complete system includes a vibrating platform, industrial vision system, robot, and software, costing significantly more than traditional feeders. Pain Point: The largest barrier for SMEs; ROI must be carefully evaluated. Relatively Lower Cycle Speed Description: The “scatter-scan-pick” process is sequential. The robot typically picks one part at a […]

Products Suitable for Use with Flexible Feeders

Flexible feeders excel in applications requiring high flexibility and gentle handling. They are ideal for: Tangle-Prone and Delicate Parts This is the primary strength of flexible feeders, solving key pain points of vibratory bowls. Examples: All types of springs O-rings, seals Flexible wires, cables Thin-walled, precision metal/plastic parts Reason: Parts are freely scattered, eliminating forced friction and impact […]

What is the Principle of a Centrifugal Feeder?

The working principle of a centrifugal feeder can be summarized in the following core steps: Rotation Generates Centrifugal Force Process: Parts are loaded into a stationary outer bowl. A motor-driven rotating disc at the center spins. Friction between the disc and the parts causes them to move. Core Principle: The rotation generates strong centrifugal force, which pushes the […]

How to Connect a Vibratory Bowl to a PLC?

The connection forms a control loop: the PLC commands the bowl, and sensors provide feedback. Hardware Connection Power Connection Description: The bowl requires a power source. This is controlled indirectly via a relay. Wiring: Connect bowl power to the relay’s output contacts. Connect one side of the relay coil to a DC power supply. Connect the other […]

en_USEnglish